The Thue–Siegel–Roth Theorem
نویسندگان
چکیده
In this paper we will give a proof of the Thue-Siegel-Roth Theorem, which states that for any algebraic number α and any ǫ > 0 there exists only a finite number of pairs of coprime integers p, q such that ∣ α − p q ∣ ∣ < 1 q2+ǫ . We will follow the proof as it is presented Leveque’s book, [8, ch 4]. This proof also deals with the more general case when p q is allowed to be an algebraic number in some fixed number field.
منابع مشابه
Mesures de transcendance et aspects quantitatifs de la méthode de Thue–Siegel–Roth–Schmidt
A proof of the transcendence of a real number ξ based on the Thue–Siegel–Roth–Schmidt method involves generally a sequence (αn)n≥1 of algebraic numbers of bounded degree or a sequence (xn)n≥1 of integer r-tuples. In the present paper, we show how such a proof can produce a transcendence measure for ξ, if one is able to quantify the growth of the heights of the algebraic numbers αn or of the poi...
متن کاملSome remarks on diophantine equations and diophantine approximation
We give many equivalent statements of Mahler’s generalization of the fundamental theorem of Thue. In particular, we show that the theorem of Thue–Mahler for degree 3 implies the theorem of Thue for arbitrary degree ≥ 3, and we relate it with a theorem of Siegel on the rational integral points on the projective line P(K) minus 3 points. Classification MSC 2010: 11D59; 11J87; 11D25
متن کاملElliptic Curves Seminar: Siegel’s Theorem
1.1. Statement of theorems. Siegel’s theorem, in its simplest form, is the fact that a nonsingular elliptic curve contains only finitely many integer-valued points. All versions of this result rely on theorems (of varying strength) in diophantine approximation; thus, in section 1.3, we will sketch a proof of Roth’s Theorem, which is the strongest such result that will be needed. We will then pr...
متن کاملOn the Product of Consecutive Integers
of k consecutive integers is never an l-th power if k > 1, 1 > 1 2 ) . RIGGE 3 ) and a few months later I 1 ) proved that Ak(n) is never a square, and later RIDGE and 14) proved using the Thue-Siegel theorem that for every l > 2 there exists a k0(l) so that for every k > k0(l) A k(n) is not an l-th power. In 1940 SIEGEL and I proved that there is a constant c so that for k > c, l > 1 A k(n) is ...
متن کاملArithmetic Groups and Lehmer’s Conjecture
Arithmetic groups are a rich class of groups where connections between topology and number theory are showcased in a particularly striking way. One construction of these groups is motivated by the modular group, PSL2(Z). The group of orientation preserving isometries of the hyperbolic upper half plane, H, is isomorphic to PSL2(R). Since Z is a discrete subgroup of R it follows that PSL2(Z) is d...
متن کامل